Formation and crystallization of gels in the Na₂O-SiO₂-TiO₂-ZrO₂ system

A. WANNAGON, R. OTA, T. WAKASUGI, J. FUKUNAGA Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku. Kyoto-shi, 606-8585 Japan E-mail: ota@chem.kit.ac.jp

 $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ gels together with Na_2O-MO_2 gels ($MO_2 = SiO_2$, TiO_2 , ZrO_2) were synthesized and effect of Na₂O addition to the gel formation and crystallization behavior were studied. From Si $(OC_2H_5)_4$, Ti $(iso-OC_3H_7)_4$, Zr $(n-OC_3H_7)_4$ and NaOCH₃ solutions in EtOH without H₂O, transparent, opaque and heterogeneous gels were obtained. By SEM observation, it was found that the opague bulk gels, rich in TiO_2 or ZrO_2 component, contain agglomerated spherical particles of less than 10 μ m diameter. Crystallization temperature (Tc) measured by DTA decreased sharply from 1258°C (SiO₂) to 613° C ($30Na_2O.70SiO_2$) due to the increasing non-bridging oxygens in the Na₂O-SiO₂ system. But in the Na₂O-TiO₂ and Na₂O-ZrO₂ systems, Tc increased as Na₂O content was increased up to 10 mol%. The thermal stability, defined by Tc/TL ratio, decreased from Tc/TL = 0.77 (SiO₂) to 0.57 (5Na₂O·95SiO₂) or increased from Tc/TL = 0.30 (TiO₂) to 0.67 $(30Na_2O.70TiO_2)$ with Na₂O addition. In the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ system maximum Tc was 891°C at 5Na₂O·76SiO₂·19ZrO₂ composition and decreased as TiO₂ or ZrO₂ contents increased. Compared with the SiO₂-TiO₂-ZrO₂ gels, Tc of the 5 mol%Na₂O containing gels (Na₂O-SiO₂-TiO₂-ZrO₂) was lower in SiO₂ rich composition and higher in TiO₂ or ZrO₂ rich compositions. It is assumed that addition of Na₂O changed the structure of amorphous TiO_2 and ZrO₂ someway to increase their thermal stability or amorphous forming ability. After DTA run up to 1000°C, cystalline phases precipitated in the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ gels were determined by XRD analysis. © 2000 Kluwer Academic Publishers

1. Introduction

In previous works [1–3], gel formation, morphology, crystallization and thermal stability of gels in the SiO2-TiO₂-ZrO₂ system were reported. Transparent bulk gels were formed in the range of 30–100 mol% SiO₂, 0-7 mol% TiO₂ and 0-50 mol% ZrO₂, and opaque bulk gels in the rest compositions. It was observed that the crystallization temperature Tc of gels determined by DTA was low in the TiO₂ or ZrO₂ rich compositions (Tc = 366° C for TiO₂ and 419° C for ZrO₂ gels) and increased with increasing SiO₂ content up to $1258^{\circ}C$ (SiO₂). The thermal stability, expressed by Tc/TL (TL = liquidus temperature) ratio, was in the range 0.23 (ZrO₂) to 0.86 (90SiO₂·10TiO₂). An interesting aspect of the Tc variation and thermal stability of gels in the SiO₂-TiO₂-ZrO₂ system containing given amount of SiO₂ is that (1) Tc attains a maximum at approximately equimolar concentration of TiO_2 and ZrO_2 for 0 mol% SiO_2 and show a convex for other SiO₂ concentrations, and (2) Tc/TL ratio exhibits a convex having a maximum at the compositions where Tc attains maxima. Kamiya et al. [4] studied the resistance to alkaline solution of glass fibres from gels in the ZrO₂-SiO₂ and Na₂O-ZrO₂-SiO₂ systems containing up to 33 wt% ZrO₂. Hara *et al.* [5]

investigated gel formation and drying characteristics of gels of xNa₂O-yZrO₂·(100 – x - y)SiO₂ system (x =0, 7, 13, 18, y = 3, 6, 10 mol%). They showed that addition of Na₂O shortens the gelation time, and makes shrinkage of gels smaller and pore size broader. Wakasugi et al. [6] showed that addition of Na₂O (<30 mol%) to the SiO₂-ZrO₂ system greatly improved the thermal stability, and the 20Na2O·10ZrO2·70SiO2 gel remained amorphous after a 1200°C-1h heat-treatment. Effects of Na₂O in Na₂O-SiO₂ gels were studied by many researchers. Phalippou et al. [7] prepared Na₂O-SiO₂ gels and measured $Tc = 842^{\circ}C (0.4Na_2O.99.6SiO_2)$ and $746^{\circ}C$ $(10Na_2O.90SiO_2)$. Prassas *et al.* [8,9] prepared xNa₂O-(100 - x)SiO₂ (x = 0-40 mol%) gels and showed that Tc decreases as the Na₂O content increases. Ota et al. [10] showed Tc/TL for Na₂O-SiO₂ gels in the composition range $Na_2O = 0-30$ mol%. Different starting materials and procedures have been performed.

There are few reports on the crystallization of gels in the Na₂O-TiO₂ and Na₂O-ZrO₂ systems. In the present work, the effect of Na₂O addition on gel formation, gel morphology and crystallization behavior in the Na₂O-SiO₂-TiO₂-ZrO₂ system were studied.

Figure 1 Procedure for sol preparation and gel processing in the Na₂O-SiO₂-TiO₂-ZrO₂ system.

2. Experimental

Gels in Na₂O-SiO₂-TiO₂-ZrO₂ system were prepared from EtOH solution of the alkoxides $Si(OC_2H_5)_4$ (TEOS), Ti(iso-OC₃H₇)₄, Zr(n-OC₃H₇)₄ (70 wt% in propanol) and NaOCH3 (28 wt% in methanol). Na2O content was fixed at 5 mol% and SiO₂, TiO₂, ZrO₂ contents varied in the range 0-95 mol%. The procedure for the sol preparation, gelation and gel procession is shown in Fig. 1. Water was not added to the solutions. The mixing sequence of the alkoxide solutions was TEOS, Ti(iso-OC₃H₇)₄, $Zr(n-OC_3H_7)_4$ and NaOCH₃ in accordance with the increasing hydrolysis rate of the alkoxides. For additional work, we prepared Na₂O containing binary gels in the Na₂O-MO₂ system $(MO_2 = SiO_2, TiO_2, ZrO_2 = 0-100 mol\%)$ to investigate the role of Na₂O to each component, (SiO₂, TiO₂ or ZrO₂) in Tc and Thermal stability.

After stirring for 10 min, the sol mixtures were put in a glass container with a plastic cover and laid for gelation at room temperature. Several pinholes were opened in the cover so that water vapor comes into the solution from the air. Gel regions and gelation time were determined as the sols became solid either in bulk or in powder state. Wet gels or precipitated powders were dried at 50° C for 3–5 days and amorphous composition (amorphous region) was confirmed by XRD method. The morphology of dried gels were observed by SEM. DTA runs were performed on dried gels with a heating rate of 5°C/min up to 1000°C. Crystallization temperatures Tc were determined from exothermal peak of the DTA curves. After the DTA run cystalline phases precipitated in the specimen were determined by XRD analysis.

3. Results and discussion

3.1. Gelation and appearances of gels

Gelation times of the Na₂O-MO₂ (MO₂ = SiO_2 , TiO₂, ZrO₂) and the Na₂O-SiO₂-TiO₂-ZrO₂ systems are shown in Figs 2 and 3, respectively.

Figure 2 Gelation time in the Na₂O-SiO₂ ($\square \blacksquare$), Na₂O-TiO₂ (\blacktriangle) and Na₂O-ZrO₂ (\bigcirc) systems as a function of Na₂O.

Figure 3 Gelation time in the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ system; (\bigcirc) transparent gels and (\bullet) opaque gels.

In the Na₂O-SiO₂ system, transparent gels formed in SiO₂, but opaque gels formed in 5–30 mol% Na₂O compositions. Gels did not form in the rest composition. Gelation time was in the range 5-6 days (Fig. 2). X-ray diffraction measurement (XRD) indicated a trace of unknown crystalline phases in 20Na₂O-80SiO₂ and 30Na₂O-70SiO₂ gels possibly hydrated sodium-silicate or Na₂CO₃. Prassas *et al.* [8] showed that exposure of Na₂O–SiO₂ gels to the air gives rise of precipitation of hydrated compound or carbonate due to the reactions of gels with CO₂ and H₂O. In the Na₂O-TiO₂ system, white powder gels formed in 0–30 mol% Na₂O compositions. Double layered gels formed in 40–80 mol% Na₂O compositions. Gelation time decreased with Na₂O addition from 8 days in TiO₂ to 7 days in 5– 20 mol% Na₂O compositions (Fig. 2). In the Na₂O-ZrO₂ system, white powder gels formed in 0–30 mol% Na₂O compositions and double layered gels in 40– 80 mol% Na₂O compositions. Gelation time was 9 days in ZrO₂ and decreased to 8 days with 5–10 mol% Na₂O addition (Fig. 2).

In the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ system, transparent bulk gels formed in 28.5-85.5 mol% SiO₂, 0-57 mol% TiO₂ and 0-57 mol% ZrO₂ compositions and opaque gels or white powder gels formed in 95 mol% SiO₂ or SiO₂ poor compositions (0-28.5 mol% SiO₂, 28.5-95 mol% TiO₂ and 28.5-95 mol% ZrO₂). Gelation time was 4-5 days in 0-47.5 mol% SiO2 and 85.5-95 mol% SiO2 compositions, and 6-7 days in 47.5-85.5 mol% SiO₂ compositions (Fig. 3). XRD indicated no traces of crystalline product in the dried gels. Transparent gel region extends to ZrO2-rich compositions (~57 mol% ZrO₂) in Na₂O containing SiO₂-TiO₂-ZrO₂ system compared with that ($\sim 50 \text{ mol}\% \text{ ZrO}_2$) obtained in alkali-free SiO₂-TiO₂-ZrO₂ system [1]. Gelation time decreased with Na2O addition to 4-7 days in $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ system (Fig. 3) compared with 5-13 days in alkali-free SiO₂-TiO₂-ZrO₂ system [1].

3.2. Morphology of gel

By SEM observation, Wannagon *et al.* [2] have reported that the opaque gels in the alkali-free SiO₂-TiO₂-ZrO₂ system contain spherical particles of $<30 \ \mu m$ redius. As an example, microfigure change of ZrO₂ gel particles before and after Na₂O addition in Na₂O-ZrO₂ system is shown in Fig. 4. It is seen that the uniform and discrete spherical particles of ZrO₂ gel of 10 μm redius (Fig. 4a) become much coagulated and the redius

decreased to $<5 \ \mu m$ in $5Na_2O.95ZrO_2$ composition (Fig. 4b). The general trend that discrete particles in alkali-free gels are coagulated with Na₂O addition applies to Na₂O-TiO₂ system.

3.3. Crystallization temperature Tc and thermal stability Tc/TL

It is clear that the addition of Na₂O to SiO₂ gels gives a strong effect to acceralate the crystallization of gels, resulting in a drastic decrease of Tc. Fig. 5a indicates that Tc of Na2O-SiO2 gels decreases with Na₂O addition sharply from 1258°C (SiO₂) [1] to 613°C (30Na₂O·70SiO₂). The Tc value of SiO₂ gel is considerably higher than that reported by Phalippou et al. [7] or Ota et al. [10]. This may be discussed in term of gel preparation conditions. Ota et al. added H_2O but in poor concentration ($H_2O/TEOS =$ 0.5). Wannagon et al. [1] added enough amount of H_2O ($H_2O/TEOS = 3$) more than stoichiometric $(H_2O/TEOS = 2)$. Phalippou *et al.* [7] stated that there is an effect of the texture of the Na₂O-SiO₂ gels on the crystallization behavior and Brinker et al. [11] stated that a high density gel obtained when stoichiometrical amount of H₂O is added. A high density gel was assumed to give a high temperature Tc. Fig. 5b indicates that Tc of Na₂O-TiO₂ gels increases with Na₂O from $366^{\circ}C$ (TiO₂) to $560^{\circ}C$ ($10Na_2O.90TiO_2$). Two peaks were detected when the Na₂O content was more than 10 mol%. XRD analysis showed that the lower temperature peak is attributed to precipitation of TiO₂ (Rutile) and the higher temperature peak to Na₂Ti₅O₁₁. Fig. 5c indicates that Tc of Na2O-ZrO2 gels increases with Na₂O from 418°C (ZrO₂) to 527°C (10Na₂O·90ZrO₂) and stays almost constant at >10 mol% Na₂O content.

Liquidus temperture TL of the Na₂O-MO₂ (MO₂ = SiO_2 , TiO₂, ZrO₂) system was taken from references

Figure 4 SEM photographs of ZrO₂ gel (a), 5Na₂O·95ZrO₂ gel (b), dried at 50°C for 5 days.

Figure 5 Crystallization temperature Tc of the Na₂O-SiO₂ (a), Na₂O-TiO₂ (b) and Na₂O-ZrO₂ gels (c) as a function of Na₂O content.

[12, 13] and thermal stability, defined by Tc/TL, was calculated in the Na₂O-MO₂ (MO₂ = SiO₂, TiO₂, ZrO₂) system and summarized in Table I. Variation of Tc/TL ratio of the binary systems are illustrated in Fig. 6 as a function of Na₂O content. In the Na₂O-SiO₂ sys-

Figure 6 Tc/TL ratio of Na₂O-SiO₂ (\Box and \blacksquare), Na₂O-TiO₂ (\triangle) and Na₂O-ZrO₂ (\bigcirc) gels. The Tc/TL values for the Na₂O-ZrO₂ system are not shown because true TL values are not available.

tem (\Box and \blacksquare), Tc/TL decreases with Na₂O from 0.77 (SiO₂) to 0.57 (5Na₂O·95SiO₂). In the Na₂O-TiO₂ system (\triangle), Tc/TL increases with Na₂O from 0.30 (TiO₂) to 0.4C (5Na₂O·95TiO₂). TL values are not available but presumed to decrease with Na₂O addition in the Na₂O-ZrO₂ system (\bigcirc). Tc/TL was estimated to increase from 0.23 (ZrO₂) to more than 0.27 at 10–30 mol% Na₂O compositions.

EDX (Energy Dispersive X-ray spectrometry) analysis was done to analyze the chemical composition of double layered gels in the Na₂O-TiO₂ system (>40 mol% Na₂O) and Na₂O-ZrO₂ system (>40 mol% Na₂O). Within the analytical accuracy for Na₂O content, the upper layer tend to show a higher concentration of Na₂O than the lower layer.

Fig. 7 shows some typical DTA curves obtained for $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ gels. The exothermic peak located at 700–800°C was taken as crystallization temperature Tc. Table II summarizes the Tc values measured for the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ gels. It is seen that the lowest Tc $464^{\circ}C$ is at $5Na_2O.95ZrO_2$ composition and highest Tc $891^{\circ}C$ is at $5Na_2O.76SiO_2.19ZrO_2$ composition.

Tc isotherms for the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ system are illustrated in Fig. 8. Tc isotherm increases with the increase of SiO₂ content up to 85.5 mol% but attains a maximum at approximately equimolar contents of SiO₂ and ZrO₂ for fixed TiO₂ concentration.

Variation of Tc for fixed concentration of SiO₂, TiO₂ and ZrO₂ are shown in Fig. 9. Fig. 9a shows that Tc values of $5Na_2O.95(TiO_2 + ZrO_2)$ gels exhibit a convex as a function of $ZrO_2/(TiO_2 + ZrO_2)$ ratio and becomes highest at midpoint between $5Na_2O.95TiO_2$ and $5Na_2O.95ZrO_2$ compositions. Tc curves increase and flatten out with the increase of SiO₂ content (x = 0.2– 0.6) in the $5Na_2O.95\{xSiO_2 + (1 - x)(TiO_2 + ZrO_2)\}$ series. Fig. 9b indicates that Tc curves of $5Na_2O.95(SiO_2 + ZrO_2)$ gels attain a maximum at $SiO_2/(SiO_2 + ZrO_2) = 0.8$ composition. With TiO₂

TABLE I Crystallization temperature Tc, Liquidus temperature TL and Tc/TL ratios, determined on gels in the Na₂O-SiO₂, Na₂O-TiO₂ and Na₂O-ZrO₂ systems in the range 0–30 mol% Na₂O. T_L of Na₂O-ZrO₂ system is lacking and presumed to be lower than TL 2700°C (ZrO₂)

Composition/mol%		Tc/°C	Tc/K	TL/K	Tc/TL	
Na ₂ O	SiO ₂					
0	100	1258	1531	1983	0.77	
5	95	786	1059	1873	0.57	
10	90	740	1013	1743	0.58	
20	80	712	985	1383	0.71	
30	70	613	886	1123	0.78	
Na ₂ O	TiO ₂					
0	100	366	639	2103	0.30	
5	95	468	741	1873	0.40	
10	90	*560, 722	833, 995	1723	0.48, 0.58	
20	80	*487, 759	760, 1032	1453	0.52, 0.71	
30	70	*432, 673	705, 946	1053	0.67, 0.90	
Na ₂ O	ZrO ₂					
0	100	419	691	2973	0.23	
5	95	464	737	<2973	>0.25	
10	90	527	800	<2973	>0.27	
20	80	540	813	<2973	>0.27	
30	70	524	797	<2973	>0.27	

*Two peaks was detected

TABLE II Crystallization temperature Tc of the $5Na_2O \cdot 95(SiO_2 + TiO_2 + ZrO_2)$ gels determined by DTA in the composition range 0–95 mol% SiO₂, 0–95 mol% TiO₂ and 0–95 mol% ZrO₂

Composition/mol%				Tc/°C	Composition/mol%			Tc/°C	
Na ₂ O	SiO ₂	TiO ₂	ZrO ₂		Na ₂ O	SiO ₂	TiO ₂	ZrO ₂	
5	95	0	0	786	5	57	28.5	9.5	733
5	85.5	9.5	0	805	5	57	19	19	779
5	76	19	0	795	5	57	9.5	28.5	824
5	66.5	28.5	0	636	5	47.5	38	9.5	715
5	57	38	0	633	5	47.5	28.5	19	757
5	47.5	47.5	0	629	5	47.5	19	28.5	794
5	38	57	0	629	5	47.5	9.5	38	825
5	28.5	66.5	0	625	5	38	47.5	9.5	704
5	19	76	0	637	5	38	38	19	747
5	9.5	85.5	0	587	5	38	28.5	28.5	776
5	0	95	0	468	5	38	19	38	802
5	0	85.5	9.5	522	5	38	9.5	47.5	824
5	0	76	19	640	5	28.5	57	9.5	636
5	0	66.5	28.5	684	5	28.5	47.5	19	733
5	0	57	38	697	5	28.5	38	28.5	763
5	0	47.5	47.5	702	5	28.5	28.5	38	779
5	0	38	57	698	5	28.5	19	47.5	796
5	0	28.5	66.5	678	5	28.5	9.5	57	809
5	0	19	76	636	5	19	66.5	9.5	700
5	0	9.5	85.5	560	5	19	57	19	728
5	0	0	95	464	5	19	47.5	28.5	752
5	9.5	0	85.5	668	5	19	38	38	764
5	19	0	76	757	5	19	28.5	47.5	773
5	28.5	0	66.6	803	5	19	19	57	775
5	38	0	57	841	5	19	9.5	66.5	778
5	47.5	0	47.5	861	5	9.5	76	9.5	717
5	57	0	38	872	5	9.5	66.5	19	720
5	66.5	0	28.5	877	5	9.5	57	28.5	721
5	76	0	19	891	5	9.5	47.5	38	743
5	85.5	0	9.5	854	5	9.5	38	47.5	748
5	76	9.5	9.5	777	5	9.5	28.5	57	744
5	66.5	19	9.5	741	5	9.5	19	66.5	740
5	66.6	9.5	19	812	5	9.5	9.5	76	718

addition, Tc increases in the ZrO₂ rich composition but decreases in the rest composition and Tc curve shows a slight convax. Fig. 9c indicates that Tc curve of $5Na_2O.95(SiO_2 + TiO_2)$ gels shows a maximum at $SiO_2/(SiO_2 + TiO_2) = 0.9$ composition. However, Tc values increase with the increase of ZrO_2 content in the $5Na_2O.95\{xZrO_2 + (1 - x)(SiO_2 + TiO_2)\}$ series.

Comparing the Tc values of Na_2O containing SiO_2 -TiO_2-ZrO_2 system with that of alkali-free SiO_2 -TiO_2-ZrO_2 system [1, 2], it is obvious that Tc

Figure 7 Typical DTA curves of dried gels in the $5Na_2O.95(xSiO_2 + 0.1TiO_2 + (0.9 - x)ZrO_2)$ compositions; x = 0.1 - 0.9.

Figure 8 Tc isotherms of the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ gels.

decreases drastically with Na2O addition in SiO2-rich compositions. For example, the highest Tc 1294°C observed in alkali-free gels (90SiO2·10TiO2) decreases to 891°C observed in the the alkali containing gels (5Na₂O·76SiO₂·19ZrO₂). On the other hand, Tc increases with Na₂O containing gels in TiO₂ or ZrO₂ rich compositions (>70 mol% TiO₂ or >70 mol% ZrO₂ content); For example, $Tc = 366^{\circ}C$ (TiO₂) increases to 468° C (5Na₂O·95TiO₂) and Tc = 419°C (ZrO₂) increases to 464°C (5Na₂O·95ZrO₂). From the supplementary experiments on the Na₂O-SiO₂, Na₂O-TiO₂ and Na₂O-ZrO₂ systems (Fig. 5a-c), we can speculate that Na₂O combines with SiO₂ network to weaken the network structure. But Na2O combines with TiO₂ or ZrO₂ components to strengthen the amorphous structure of TiO₂ or ZrO₂ gels. Because of the lack of TL values and consequently lack of Tc/TL ratios in the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ system, we can only

Figure 9 Tc isotherms of $5Na_2O.95\{xSiO_2 + (1 - x)(TiO_2 + ZrO_2)\}$ gels for fixed SiO₂ concentration : x = 0-0.6 (a), $5Na_2O.95\{xTiO_2 + (1 - x)(SiO_2 + ZrO_2)\}$ gels for fixed TiO₂ concentration : x = 0-0.6 (b), $5Na_2O.95\{xZrO_2 + (1 - x)(SiO_2 + TiO_2)\}$ gels for fixed ZrO₂ concentration : x = 0-0.6 (c).

Figure 10 Typical XRD patterns of the $5Na_2O.95(xSiO_2 + (1 - x)ZrO_2)$ (x = 0-1.0) gels after DTA run up to $1000^{\circ}C$, and quenched.

imagine the variation in the thermal stability or amorphous forming ability of the system. However notice some advantageous aspects in Na₂O containing SiO₂-TiO₂-ZrO₂ system; (1) Tc and thermal stability are enhanced in TiO₂/TiO₂ rich compositions and ZrO_2/ZrO_2 rich compositions and (2) processing is easy because TL must be lowered with Na₂O inclusion.

3.4. Precipitated crystalline phases after DTA runs

Some of XRD patterns obtained after the DTA run up to 1000°C are shown in Fig. 10. Crystalline phases precipitated in the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ gels are summerized in Fig. 11. Cristobalite (SiO_2) , denoted as Sc, was precipitated in SiO₂ rich compositions (76– 95 mol% SiO₂) in the $5Na_2O.95(SiO_2 + ZrO_2)$ system. Tridymite (SiO₂), St, precipitated in SiO₂ rich compositions (66.5–95 mol% SiO₂). Rutile (TiO₂), Tr, precipitated in the ZrO₂ poor compositions (0-76 mol% SiO₂ and $0-28.5 \text{ mol}\% \text{ ZrO}_2$) in the $5Na_2O.95(SiO_2 + TiO_2)$ system. Monoclinic ZrO_2 , Zm, precipitated in the ZrO_2 rich composition (>57 mol% ZrO₂) and tetragonal ZrO₂, Zt, appeared in wide range of comositions (9.5-76 mol% ZrO₂) in the $5Na_2O.95(SiO_2 + ZrO_2)$ system. Na₂Ti₅O₁₁, NT, precipitated in the TiO₂ rich compositions (>57 mol% TiO₂). Orthorhombic $ZrTiO_4$, ZT, emerged in the central area down to the midpoint (SiO₂ = 0-57 mol%, TiO₂ = 19-85.5 mol%) of the TiO₂-ZrO₂ system.

At TiO₂ rich compositions in the Na₂O-TiO₂-SiO₂ system, titanium atoms are considered to be octahedrally coordinated by oxygen [14–16]. On Na₂O addition the coordination number of titanium atom is reduced from 6 to 4 [17, 18]. Compared to the precipitated

Figure 11 Precipitated crystalline phases in the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ gels after DTA run up to $1000^{\circ}C$, and quenched.

cystalline phases of tetragonal ZrO_2 , Zt and monoclinic ZrO_2 , Zm in alkali-free SiO₂-TrO₂-ZrO₂ system [1], tetragonal ZrO_2 was found in a wider range of area instead of monoclinic phase in this present work. It is inferred that from increased thermal stabilitity related with amorphous-forming ability, Na₂O addition may have reduced coordination number of zirconium atom from 8 to 5 or 4.

4. Summary

Gels were prepared in the $5Na_2O.95(SiO_2 + TiO_2 + TiO_2)$ ZrO_2) system together with Na₂O-MO₂ (MO₂ = SiO_2 , TiO_2 and ZrO_2) system using $Si(OC_2H_2)_4$, $Zr(n-OC_3H_7)_4$ $Ti(iso-OC_3H_7)_4$, and NaOCH₃ solutions in EtOH without H_2O . For the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ gels, transparent bulk gels formed in the range 28.5-85.5 mol% SiO₂, 0-57 mol% TiO₂ and 0-57 mol% ZrO₂, and opaque gels in the rest compositions. SEM observation showed that the opague gels consist of spherical particles of less than 5 μ m in diameter. Crystallization temperature, Tc was measured by DTA. With Na₂O addition, Tc decreased from 1258°C (SiO₂) [1] to $786^{\circ}C$ ($5Na_2O.95SiO_2$) in the $Na_2O.SiO_2$ system but increased from 366°C (TiO₂) [1] to 468°C (5Na₂O·95TiO₂) in the Na₂O-TiO₂ system and from $419^{\circ}C$ (ZrO₂) [1] to $464^{\circ}C$ (5Na₂O·95ZrO₂) in the Na₂O-ZrO₂ system. Therefore Tc in the SiO₂ rich compositions in the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ system was lower than in the alkali-free SiO2- TiO_2 -ZrO₂ system. On the other hand Tc in the TiO_2 rich or ZrO_2 rich compositions in the $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ system was higher than in the SiO₂-TiO₂-ZrO₂ system. After DTA run of $5Na_2O.95(SiO_2 + TiO_2 + ZrO_2)$ gels up to $1000^{\circ}C$, cristobalite (SiO₂), tridymite (SiO₂), rutile (TiO₂), baddeleyite (ZrO₂) and tetragonal ZrO₂, Na₂Ti₅O₁₁ and monoclinic ZrTiO₄ precipitated. It is assumed

that Na_2O combines with SiO_2 to weaken the SiO_2 network, but combines with TiO_2 or ZrO_2 to trengthen the structure of amorphous TiO_2 and ZrO_2 network.

References

- 1. A. WANNAGON, N. MISHIMA, T. WAKASUGI, R. OTA and J. FUKUNAGA, *J. Ceram. Soc. Japan* **105** (1997) 940.
- 2. A. WANNAGON, N. MISHIMA, R. OTA, T. WAKASUGI and J. FUKUNAGA, *Mat. Sci. Res. Inter.* **3** (1997) 210.
- R. OTA, A. WANNAGON, T. WAKASUGI and J. FUKUNAGA, Proc. 18th ICG, Am. Ceram. Soc. (1998) CD-Rom E1:25.
- 4. K. KAMIYA, S. SAKKA and Y. TATEMACHI, *J. Mater. Sci.* **15** (1980) 1765.
- 5. T. HARA, R. OTA, J. FUKUNAGA, T. WAKASUGI and A. MIYAKE, J. Ceram. Soc. Japan 100 (1992) 905.
- 6. T. WAKASUGI, R. OTA, T. TAWA and J. FUKUNAGA, *Mat. Sci. Res. Inter.* **1** (1995) 65.
- 7. J. PHALIPPOU, M. PRASSAS and J. ZARZYCKI, J. Non-Cryst. Solids 48 (1982) 17.
- 8. M. PRASSAS, J. PHALIPPOU, L. L. HENCH and J. ZARZYCKI, *ibid.* 48 (1982) 79.
- 9. M. PRASSAS, J. PHALIPPOU and L. L. HENCH, *ibid.* 63 (1984) 375.

- R. OTA, J. FUKUNAGA and T. WAKASUGI, Proc.Intn'l Conf.Sci&Tech.New Glasses (1991) 59.
- C. J. BRINKER, K. D. KEEFER, D. W. SCHAEFER and C. S. ASHLEY, J. Non-Cryst. Solids 48 (1982) 47.
- E. M. LEVIN, C. R. ROBBINS and H. F. MCMURDIE, "Phase Diagrams for Ceramists," Vol. 1 (Am. Ceram. Soc., 1987) p. 94.
- R. S. ROTH, J. R. DENNIS and H. F. MCMURDIE, "Phase Diagrams for Ceramists," Vol. 6 (Am. Ceram. Soc., 1987) p. 254.
- 14. H. SCHOLZE, "Glass Nature, Structure and Properties," Translated edn. (Springer-Verlag New York, Inc., 1991) p. 142.
- N. IWAMOTO, N. UMESAKI, H. HIDAKA, K. HIRAO and N. SOGA, *Yogyo-Kyokai-Shi* 94 (1986) 160.
- T. HANADA and N. SOGA, J. Non-Cryst. Solids 38/39 (1980) 105.
- K. TAKAHASHI, N. MOCHIDA and Y. YOSHIDA, Yogyo-Kyokai-Shi 85 (1977) 26.
- C. W. PONAFER, H. BACK and J. E. DICKINSON JR., Non-Cryst. Solids 201 (1996) 81.
- M. YAMAMOTO *et al.*, "Handbook of Industrial Crystal," Jpn. (Kyoritsu Publishing Co. Ltd., 1971) p. 42.

Received 13 July 1999 and accepted 14 February 2000